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A TABLE OF ELLIPTIC INTEGRALS: 
ONE QUADRATIC FACTOR 

B. C. CARLSON 

ABSTRACT. Integration in terms of real quantities is accomplished for 33 inte- 
grands that are rational except for the square root of a cubic or quartic polyno- 
mial with exactly one pair of conjugate complex zeros. Formulas are provided 
by which 45 more integrals of the same type can be expressed in terms of real 
quantities with the help of earlier papers. Neither limit of integration is as- 
sumed to be a singular point of the integrand. All the integrals are reduced to 
R-functions, for which Fortran programs are available. Most of the integrals 
are not listed in other tables. 

1. INTRODUCTION 

This paper treats integrands that are rational except for the square root of a 
cubic or quartic polynomial with exactly one pair of conjugate complex zeros. 
References [4, 5] dealt with elliptic integrals of the form 

5 

(1.1) [PI =[PI.P5]= fJ(ai+bit)pd/2t, 
Yi=l 

where all quantities are real, p1, ..., p5 are integers (omitted if 0), and the 
number of odd p's is exactly three ("cubic cases") or four ("quartic cases"). 
Quartic cases were reduced by recurrence relations to the integrals 

( 1.2) II = [-Il, - 1, - 1 , - 1 ], I2 =[I 1 - 1 -1 , -3] , 
= [1, -1, -1 , - -2], I2 = [1, -1, -1, -1], 

and cubic cases were reduced to 

(1.3) ilc = [_11 -11 - ']I I2c =[1, I-1,I-1], I3C = [I1,-I1~-1-2]- 
All seven of these integrals have P2 = P3. 

In ??2 and 3 we consider integrals in which P2 = P3 but a2 + b2t and a3 + b3t 
are conjugate complex: 

1.4) [PI P2 P2 P4, P5]= (f + gt + ht2)P2/2 (a,? b Pt)'/2dt 
i=1 4 5 
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where all quantities are real, x > y, f + gt + ht > 0 for all real t, p1 and 
P2 are odd integers, p4 may be odd or even, and p5 is even (zero if p4 is 
even). Section 2 contains quartic cases (p4 odd) and ?3 contains cubic cases 
(p4 even). Proofs are given in ??4 and 5. All integral formulas have been 
checked by numerical integration; some details of the checks are given in ?6. 

We assume that the integral is well defined, possibly as a Cauchy principal 
value, and, in particular, that ai + bit > 0 for y < t < x if pi is odd. The 
formulas of [4, 5] still hold but contain a2, b2, and their complex conjugates. 
The goal is to rewrite these formulas in terms of real quantities. 

The integrals I I2 ..., i3c are expressed in terms of four R-functions: 

(1.5) RF(X, Y, z) = 2 [(t+x)(t+y)(t+ z)] dt, 

(1.6) RJ(X,y, z, W) = f [(t + x)(t + y)(t + z)] 1/2 (t + w) dt, 

and two special cases, 

(1.7) RC(x, y)=RF(X Y, y) and RD(X, y, z) = RJ(x, y, Z, Z). 

When their last argument is negative, RC and RJ are interpreted as Cauchy 
principal values. The functions RF, RD, and RJ respectively replace Legen- 
dre's elliptic integrals of the first, second, and third kinds, while RC includes 
the inverse circular and inverse hyperbolic functions. Fortran codes for numer- 
ical computation of all four functions, including Cauchy principal values, are 
listed in the Supplements to [3, 4]. 

The main task is to express II, 'I2'... I3c in terms of real quantities by 
using Landen's transformation of RF and RJ . It is then simple to put formulas 
from [4, 5] with P2 = P3 in real form. However, cases like [1, -1, -1, 1] 
require further work with recurrence relations because they are not listed in [4, 
5], where the odd p 's are always in descending order. 

2. TABLE OF QUARTIC CASES 

All quartic cases are reduced to the integrals II I2' I3, and I3 . We assume 
2 

x >y, al+blt> O and a4?+b4t> 0 for y < t<x, and f+gt+ ht2 > 0 for 
all real t. The first set of definitions will apply in ?3 to cubic cases also: 

(2.1) X =(a + b x)1/2, (a, + bly) 1/2 d J= a b - abi, 

(2.2) a = 2fb - gal, ,BI=gb - 2ha,, 2 = 4fh - g2 > , 

(2.3) c 2fb b (alb + a b,) + 2ha-a1, 

(2.4) 4=(f+gx+hx2)1/2, q=(f+gy+hy2) 1/2 

(2.5) A(P1 , P2, P2, p4 P4 = XlI$2XP4Xq5 -y1Pi ?1P2 y4P4 y;Ps 
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The following definitions are used only in quartic cases: 

(2.6) (x - y)M = (X1 Y4 + Y1X4)[(4 + q)2 - h(x _ y)2]1/2 

= (X1 Y4+ Y1X4)[24q + 2f + g(x + y) + 2hxy]l/2, 

2 = 2 C2 2 2 2 

(2.7) L?=M 14+ C Cc44, W+ =M + dI4(CI5 + cl C55)Id 5, 

(2.8) (x - y) U= X1 X41 + Y1 Y4, w2 =U2 cd45 /2dI5 
(2.9) Q = X5Y5W/X1Y1, P2 = Q2 + c5d45/2d15. 

When a5 = 1 and b5 = 0, the quantities W2, Q and p2 reduce to 

2 2 2 2 2 (2.10) WIV= U -c11b4/2bI, Q1 = WIX1Y, P1= Q+?hb4/b, 

2 2 and W+2 - M reduces to 

(2.11) p = d14[l1 - (2h) 1/2C 1I ]lb,. 

When one limit of integration is infinite, M, U, and Q become, for x = 

+00, 

M = (b 12Y + b 12Y1)(2h 1/2 + g + 2hy) 1? 

U = (b1b4) 12? + h 1/ Y1 Y4, Q =(b5/bl) 1/2 Y5 W/ Y1, 

or, for y = -oo, 

(2.13) AM = [(-b) l/2 X4+ (-b4)1/2XX](2h1/24 - g - 2hx)l/2 

U = (b1b4)112?h+h XI XX4 Q = (b5/bl) 1 X5W/X1 

The four basic integrals (1.2) are 

(2.14)I1 = 4RF(M2 L2 L), 

I2 = (2cll /3c44)[4(c 4 +cllc44)RD(M2, L2, L 2) 
(2.15) - 6RF(M2 , L2 , L+) + 3/U] + 2X Y1/X4Y4U, 

I3 = (2c11/3c55)[4(dI4/d5)(45 ? c21 c55)RL(M2, 2, L2j W2) 

(2.16) - 6RF(M2 , L2, L+) + 3Rc(U2, W2)] 

+ 2R (p2, Q2)I 
2 1/2 2 ~2 2 2 22 2 

I - 
(2c, /9h) 12[4pR (M2, L? L+ M + p) - 6RF(M L L +) 

(2.17) + 3R (U2 vW2)] 
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Integrals that converge when one limit of integration is infinite do not 
involve I3. 

Of the 41 quartic cases listed in [A], 29 have P2 = P3 . In these 29 cases the 
formulas given there can be used to evaluate 

(2.18) [P1 , p2 , p2, p4, p] = (f + gt + ht2Y'2/2 J7 (a, ? bit)"1 dt 
1= 1,4,5 

by using (2.13) to (2.17) and usually doing a small amount of algebra to express 
coefficients involving a2, b2, a3, b3 in terms of f, g, and h. To aid in 
doing so, we list several identities: 

bb-h dd =hb~~2r.= 2/2 2 2 2 2 
b2b3 = 'h d2id3i =3hbir2ir3ii = ci,/2, d23 = r223- = , 

a2d3? + - d bd "b - d dld +djd =C 2 
(2.19 2 3i 3 2i i' 2 31?U3U2ff 2 3 ii 

r2i + r31 = /31/hb1, r 31? r31 = (cl,/hbi) - 

r- + r-j = 2b I3/c, r12 - = r2 +rj3 = a,l/b, + aj/bj - g/h. 

We recall that d.i and rij = dl/bibi are antisymmetric in i and j. 
Instead of rewriting all 29 formulas in terms of f, g, and h, it should 

suffice to give two examples. A simple one is 

(2.20) [1 , 1, 1, -3] = [2(bl4 + hd,4)I3 + 3b, CI' - b C 2II ]14b,b 2 

+A( 1, 1, -1)/b4, 

and one of the most complicated is 

[1, 1, 1, -1, -4] = [(/35/b5 - c25/d45 + b c 25/b5d1)I3 + 4hI/b5 

(2.21 ) + c424I2/d45 - cC2 I/ Id5 - 4A( 1, 1, 1, - 1, -2)]/4b5. 

The coefficient of I3 has been slightly simplified by using the identities 

(2.22) 2hd1i = bl/j -bj, 3, d,J/k = bic,k - bJCik. 

Among integrals with P2 = P3, Z IP, I < 8, and E p, < 0, there are 16 that 
are not listed in [4] because the odd p 's are not in descending order. Six are 
integrals of the second kind with p5 = 0 and Jp1 < -2: 

(2.23) -[-3, -I - , -3] = [(b 2 + b2C424/C 2 1)I2 - 2b2b41 ]Id 
2 

+4blA(-l, 1, 1, -l)/d 141 

(2.24) [-3, 1, 1, -3] = (c412 - 24II)/d24 + 2A(-1 , 1, 1, -1)/d14, 

(2.25) [-,1, 1, -5] =[-cI2 2 cl1I 2dI4A(I , 1, 1, -3)]3d 

(2.26) [1, -3, -3, -1] = [f412 - lI,+2(g+2hx)/, X4 2 
- 2(g + 2hy) Y? 4q]2 
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(2.27) [1, -3, -3, 1] 4[-c4I2 + 14 1 - 2(a4 + /4X)XI /X4 2 
+ 2(a4 + fl4Y)Y1 / Y4]/ 2 

[-1 , -3, -3, -1] = (2/162c1) {M(2b1b4 - hl4)12 ?h C 
I1 

(2.28) + 2? 2 - h(al + fljx)]X1/X44 

- 2[V2b - h(a1 + /l3y)]Yl / Y4q}. 

Four integrals of the third kind with p5O0 or 2 and Epi > -2 involve I3 
but not I3: 

(2.29) [ 1, - 1 -1,1] = [(-blfl4 - b4flI)I3 + bc 241`2 -b bc 2 IIg]14hbI 
+(b4A(l, 1, 1, -1)/h, 

(2.30) [1 1, 1, -3] = (2hdb4I? + c4I2 - b4cl I2 )/2b1b4d14, 

(2.31) [-1, 1, 1, -1] = [(bl34 + b43I)I3 + bIC44I2 + b4C1II]/4b1b4 
+A(I 1, 1, -1)/b1, 

[- 1, 1, 1, -3, 2] = [(b b5f4 + b4b531 - 4hbld45)I3 

(2.32) ? (b5 - 2bId45/d14)b c44I2 
+ (b5 + 2b d45/d4)b4c2 I ]/4b 2b42 

+b5A(I 1, 1, -1)/b1b4. 

In the last integral, a5 and b5 are unrestricted. 
Six more quartic cases with p5 = -2 or -4 involve I3, and the three with 

ZPi> -2 involve I3' also: 

(2.33) [1, -1, -1, 1, -2] = (d45I3 + b4I3?)b5, 

[3, -I1, -I1, 1, -2] = d 5d5I lb 
2 

+ [(4hb4d15/b5 - b1/34 - b4 l)I3 

(2.34) +b c4412 - b4c 2 
I 

+4b1b4A(I, 1, 1, -1)]/4hb5, 

(2.35) [-1, 1, 1, -1, -2] = (b14513 + 2hd 5If - b5c 2II)/2bIb5d5, 

(2.36) [-1, 1, 1, -3, -2]= (dI4c55I3 - d1c c442 + d45?CIIII )12dl4d 5d45 
[1, - 1, - 1, 1, -4] = [(2d15c45 - d4c5)I3 dc2 

(2.37) - c 
2 

I ]12d c 
2 

-2d45A(l, 1, 1,-l,-2)/C5 5, 
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[-1 , 1 , 1 , -1, -4] = [(#5/b5 - 
I 

- b,C 25/b5d, 5)I3 

(2.38) + C2? I + C I I Id s 
- 4A( l, 1, 1, - i, -2)]/4d,5. 

3. TABLE OF CUBIC CASES 

In addition to (2.1) to (2.5), the following definitions are used in cubic cases. 
They are obtained from (2.6) to (2.16), with omission of (2.10), by putting 
a4 = I and b4 = 0 and subsequently replacing (a5, b5) by (a4, b4): 

(3.1) (x -y)M = (XI + Y,)[(? + q)2 - h(x -Yv) -] / I 

= (X, + Y,)[2d, +2f +g(x+y)+2hxy] 1/ 

2, 2, I2C,2 (3.2) 4= M f _ ,(2h)c?=M b,(C +C C 

(3.3) (x - y)U = X Y , W2=U c2 b 

(3.4) Q = X4Y4W/X,Y Y, p2 = Q2 + C2b 

(3.5) p = (2h) 1/2c c fl,. 

When one limit of integration is infinite, M2, U, and Q become, for x 
+00, 

(3.6) ,,r12 = b,(2h1/2 + g + 2hy), U = h1/2Y 

Q = (b4/b,) '12Y4W/YI, 

or, for y = -oo, 

3)7 M2 = -b,(2h - g - 2hx), U= Xi" 

Q = (b4/b, 12) X4 W/X. 

The three basic integrals (1.3) are 

(3.8) I, =2RFM L-, L+) 

12C = (2c2 /9h)"' [44pRD(M- L-I * L L) 

-6RF(M L L ) + 3/U] + 2X,Y,/U, 

i3c = (2c, /3c44)[(-4b,/d,4)(c74 + c,,c44)Rj(M> L-, L+ , W+2) 

(3.10) 6RF(M 2, L2, L2 )+3RC(U2 W2)] 

+ 2R C (p2, Q2). 

When one limit of integration is infinite, the integral (1.1) with Hlb1 # 0 

converges only if Epi < -2. To allow for the possibility of an infinite limit of 
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integration, integrals with Tp, < -2 should not be reduced in terms of 12cI 
which has EpZ = -l by (1.3). In [5] an integral called J2c was used in such 
cases, but in the present context J2c is complex and is replaced by 

N2C = (8h/9c 2)112[4pRD(M2 L2, L ) 

- 6RF(M2 , L2, L2) + 3/U] + 2/X1Y1U. 

The last term vanishes if one limit of integration is infinite. 
Of the 40 cubic cases with E {pi I < 7 and Epi < 3 listed in [5], 20 have 

P2 = P3 . For brevity, some of the formulas contain the quantities Jlc and K2C i 
which can be computed in the present context from 

(3.12) J1c =cl= I j/2 - 2b A(l , 1 1), 

K = c 1N2 /2 - 2d 4A(- I, 1, 1, -2). 

In 18 of the 20 cases the formulas given in [5] can be used to evaluate 

(3.13) [P I P2, P2l P4]= (f +gt+ht2)P2/2 rf (ai + bt)2 dt 
i= 1,4 

by expressing coefficients involving a2I b2, a3, b3 in terms of f, g, and 
h with the help of identities (2.19). Since the remaining two cases, as well as 
[-3, -3, -3], involve the complex quantity J2CI they are listed here in terms 
of N2c: 

(3.14) [I, -3, -3] = [-cl 2N2c - flIIc - 2(al + fljx)/Xj1 

+ 2(al + 31y)/Y,1 ]/6, 

(3.15) 
[-1, -3, -3] = [fiN2c + 2hIc + 2(g + 2hx)/Xj 

-2(g+2hy)/Y1Yf]1/ 

[-3, -3, -3] = (2/12 ci )[(2b2 6- hC41 )N2c - h/l3IIc 

(3.16) - 2h(agl + f,l x)/Xl + 2h(atl + fl,y)l Yl t1] 

+ 4b1A(-I, -1, -l)/41. 

Among integrals with P2 = P3, Z lp I1 < 7, and Z,pi < 3, there are 12 that 
are not listed in [5] because the odd p's are not in descending order. Five are 
integrals of the second kind with p4 = 0: 

(3.17) [-3, -I , -1] = N 

(3.18) [-1, 1, 1 ] = [/1912c + CilIlc + 2b1A(I , 1, l)]/3b 

(3.19) [-3, 1, 1] = (2hI2c + /flIlc)/b -_2A(-l, 1 1)/b1 

(3.20) [-5, -1, -1] = (-2/3c 11)[2/l,N2c + hIjc + 2b1A(-3, 1, 1)], 

(3.21) [-5, 1, 1] = [31IN2c + 2hIIc - 2b1A(-3, 1, 1)]/3b I 
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Three integrals of the second kind have p4 2 with no restrictions on a4 
or b 
(3.22) [-3, - , - 1 , 2] = (-dl4N2c + b4Ilc)/bl 

[-3 , 1, 1, 2] = [(b4fl1 - 6hd,4)I2C + (b4c 21 -3d 3 
(3.23) 2 4l)I1b 

+2[d 4A(-1, 1, 1)+b4A(I, 1, 1)/3]/b 
2 

[-1 1, 1, 2] - [(2bi b42 - hb4cl I - 5hdI4/lI)I2c 
(3.24) - (b4/l + ?Ohdl4)Jlc]ll5hb 

2 
+2[b4A(3 1, 1)/5-d 4A(1, 1, 1)]/b 

2 

The final four cases are integrals of the third kind with p4 = -2 or -4: 

(3.25) [-3 - , - 1, -2] = (b4I3C - b d4N - bb4Il)/d4 
2 

- (b4cl, ? 2d1l4/31)I,C]/2b, d 

4 C 1 14 N2c Ad1 14' 

(3.27) [-51 1, 1 - 2]= (bC44I3c + 2hdl4I2c - b4c 1 IlC)/2b1 b4d 14 

(3.28) [-1 1 1 -4] = [(24d4 - blc + 2d14K2 + I -4] [(2fl4u14 44)13c ?42 C 4J14bd4 

4. THE BASIC INTEGRALS 

To derive the expressions given in ??2 and 3 for the seven integrals Il, 
I2 5 ... 5 I3c in terms of real quantities, it suffices to deal with Il and I3 because 
the other five can be obtained from these. Although II was treated in [2], we 
shall redo it here to have uniform notation and to prepare for I3 . 

By [4, (2.13), (2.2), (2.3)] we have 

(4.1) Il = [-I1, -1,5 -1,5 -1] = 2R (U2 u2 U123U1) 1 F (Ul 2 1 3 14) 52 

(X - y) U, = Xi XJ Yk Y,l + Y? YjXk Xfll, 
(4.2) 

=~~~ (a +?b x) 1/2 
5 ~ = 

(a, +bly) 1/2, 

where i, j, k, in is any permutation of 1, 2 3 4. Because al + b,t and 
a4 + b4t are assumed to be strictly positive on the open interval of integration, 

XI, Y,, X4, and Y4 are real and nonnegative. From a2 = a3 and b2 = b3, 
where an overbar denotes complex conjugation, it follows that X2 = X3, Y2= 
Y3, U12 = U13, and U14 > 0. The real quantities f, g, and h satisfy 

(4.3) (a2 + b2t)(a3 + b3t) = f + gt + ht2 > 0, -oo < t < oo. 
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Because only f, g, and h are given, we may choose b2 = b3 = h'/2 and 
Im(a2) > 0. If we assume x and y to be finite and take the principal branch 
of the square roots in (4.2), then X2 and Y2 lie in the open first quadrant of 
the complex plane, X3 and Y3 lie in the open fourth quadrant, and X2 Y3 and 
Y2X3 have positive real part. Since we assume x > y and since X Y4 and 
Y1X4 cannot both vanish if I, is finite, we conclude that Re U12 = Re U13 > 0. 

The variables of RF can be made real and nonnegative by Landen's trans- 
formation [6, (5.5)], 

RF (U12 , U123 , U24 )=2RF (M2 , L2, L+), M=U12i+U13, 

(4.4) L? = [(U12 + U14)(U13 + U14)]112 ? [(U12 - U14)(U13 - U14)]2, 

LL_ =2MU14, L2 M2 [(U2 _U2 )1/2 ? (U2 u2 )1/2]2 

Recalling that U14 > 0, U12= U13, and Re U12 > 0, we see that M > 0, 
L+ > 0, and L_ > 0, with equality if and only if U14 = 0 (the integral being 
then called complete). The last equation in (4.4) shows that L2 > M2 > L2 
Since 

(4.5) (x - y)M = (XI Y4 + Y1 X4)(X2 Y3 + Y2X3) 

and 
(X2Y3 + Y2X3)2 = (X2X3 + y2y3)2 - (X2 - Y2)(X 

2 
- 

we define 

(4.6) 2=X2X3 (f+gx+hx2)1/2, =Y2Y3=(f+gy+hy21/2 

and obtain 

(4.7) (x - Y)M = (X1 Y4 + yX4)[( + C)2 - h(x - y) 21/2 

Equation (4.2) implies 

(4.8) u2 -Uk =d,, dlk d11 =a bj -ajb, 

where i,1j k, m is any permutation of 1, 2, 3, 4. From (4.4) we see that 

L2- 2 [(d d /)2 ? (d 1/2 2 

(4.9) = d12d43 + d42d13 ? (2dl2dl3)1 (2d42d43) 
/2 

2 
=C14 Cl1C44' 

where 

c2 di2dj3+ dj2di3 

(4.10) = 2b2b3a,aj - (a2b3 + a3b2)(albj + ajbl) + 2a2a3b,bj 
- 2fblb1 - g(a,bi + ajb1) + 2haiaj. 

We note that the arguments of RF in (4.4) differ by amounts that are indepen- 
dent of x and y . The assumption that f + gt + ht2 > 0 for all real t implies 
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f > 0, h > 0, and g2 - 4fh < 0. Hence, C 2 is a positive definite quadratic 
form in the variables ai and bi, and so we may take cii to be real and positive. 

The integral II has now been expressed in terms of real quantities. Although 
the transformation (4.4) is unnecessary unless f + gt + ht2 has complex zeros, 
it can still be used if f + gt + ht2 has real zeros that do not interlace the zeros 
of (al + b1 t)(a4 + b4t). If they do interlace, the last member of the equation 

(4.11) (L2 _ L2 )2 = 4c c42= 16d2d13d42d d 

is negative, and L+ and L_ are then conjugate complex. 
We turn next to I3 = [1, -1, -1, -1, -2], expressed by [4, (2.15), (2.5), 

(2.9)] as 

= ~~~~~~2 2 2 W2)+R(2 Q2) I3 (2dl2dl3dl4/3dl5)Rj(U12, U13, U14, W2) + 2RC(PI' 

(4.12) W2- U14-dI2dI3d45/dI5, Q=X5Y5 W/XIYl 

p2 = Q2 +?d25d35d45/dI5. 

Each d or U with a subscript 3 is the complex conjugate of the corresponding 
quantity with a subscript 2. By (4.10) we have 

(4.13) d d= c21/2, d25d35 = cS5/2. 

Since U14 > 0, w2 and the arguments of RC are real, and we need only ex- 
press RJ in terms of real quantities by Landen's transformation. In [6, (8.5)] we 
put (x, y, z, w)=(U12, U13, U14, W) and (a, z?, w?) = (M, L?, W?)/2 
to obtain 

1172 72\ (F2 u2 2 2 
_(W+ - W )RJ( U125 U 13 1 U14 W) 

(4.14) 4(W - M2)RJ(M2 L2 L2 W2+ 
- 6RF (M2, L2, L )+3RC(U, W2), 

where M and L? are given by (4.4) and where [6, (7.2)] implies 

2 2 2 2 1/2 2_2 1/2 2 
(4.15) - M = [(W - U12) ?(W u3) l ] 

From [4, (2.9)] we find 

2 22 2 
(4.16) W _ U12 = -dI3dl4d25/d5 , W2 _ U13 -dl 2dl4d35/dI5, 

from which it follows by (4.10) that 

W;- M (d /d )( dld - d12d 35) 

(4.17) ?2(d2Id2 1/2 (d d d /2 

= (d14/d1 5) ( 2 35 ? c5sI 
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We are free to choose (d4/d 25) 12 to be dI4/d15 regardless of the sign of the 
latter quantity because (4.14) still holds if W+ and W are interchanged (see 
the remark following [6, (8.5)]). Substitution in (4.14) and then in (4.12) leads 
to (2.15), wherein U14 is abbreviated to U. 

In I3 we put a5 = a4 and b5 = b4 to get I2 or al = 1 and b5 = 0 to 
get I3. To obtain I IC and I3C from I, I2 and I3, we put a = I and 
b4= 0 and subsequently replace the subscript 5 by 4. The quantity N2C is 
defined by 

(4.18) c21 N2c/2 = hI2c-2bIA(-1, 1, 1). 

Both terms on the right side become infinite if one limit of integration is infinite. 
Substitution of (3.9) and use of the identity 

(4.19) hXl Y1 - b, UX, Y1A(- 1, 1, 1)=cl2 1/2 

lead to (3.11), in which all terms remain finite. We note from (3.17) that 
N2 = [-3, -1, -1]. From [5, (2.59)] we have 

(4.20) K2C = hI2c-2b4A(l, 1, l,-2), 

which implies (3.12) by way of (4.18) and [4, (4.8)]. In deriving (3.14) to (3.16), 
it is necessary to use 

(4.21) b3J2C = hI2c - 2b3A(l, 1, -1) = c 2N2c/2 - 2d3A(-1 , 1, -1), 

where the first equality comes from [5, (2.17)] and the second from (4.18) and 
[4, (4.8)]. 

Defining 

(4.22) j = 4fh - g 
and noting from (4.3) that 

a2b3 + a3b2 = g, (a2b3)(a3b2) = fh, 

we find 

(4.23) 2a2b3= g + idb, 2a3b2= g - id, d23 = a2b3 -aa3b2 = id 

The last equation is used in (2.19). 

5. USE OF RECURRENCE RELATIONS 

The 16 quartic cases (2.23) to (2.38) are obtained by recurrence relations 
with occasional help from the integrals listed in [4]. Let ei denote an n-tuple 
with 1 in the ith place and O's elsewhere (for example, [p + 2e1] = [pI + 
2, P2, ... , Pn). The four relations used most frequently are reproduced from 
[4] for convenience: 

(Ai) (P1 + + Pn + 2)b,[p] = EpJdJ,[p - 2ej] + 2A(p + 2ei), 
1i7? 

(Bij) dlj[p] = bj[p + 2e] - bi[p + 2e1], 
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(Cij) b1[p] = b1[p - 2ei + 2ej] + dlj[p - 2ei], 

(Dijk) dij[] = dkj[P + 2ei - 2ek] + dik[P + 2e1 - 2ek]. 

A fifth relation [3, (5.6)], with i = 1 and [p] = [- 1, - 1, - 1, -3], is used to get 
(2.23). After obtaining [-1, 1, -1, -3] and [-1, -1, 1, -3] from (D142) 
and (D143), respectively, we can find (2.24) by choosing [p] = [-1, 1, 1, -3] 
in (A4), and we can find (2.25) from (D143). After obtaining [1, -1, -3, -1] 
from (D234) and interchanging subscripts 2 and 3 to get [1, -3, -1, -1], 
we can find (2.26) from (B23) and also (2.27) from '242). Similarly, after 
obtaining [- 1, - 1, - 3, - 1] from (B 13) and interchanging subscripts 2 and 3 
to get [-1, -3, -1, -1], we can find (2.28) from (B23). The ten quartic cases 
of the third kind, (2.29) to (2.38), follow in order from (C42), (C31), (C41), 
(C54), (C45), (C15), (B15), (B45), (C45), and (B15). 

To reduce the first cubic case, (3.14), we first express [1, -1, -3] in terms 
of A2C by using [5, (2.25)] and (4.21), interchange (a2, b2) with (a3, b3) to get 
[1, -3, -1], and then obtain [1, -3, -3] from (B23). Exactly the same pro- 
cedure, starting with [- 1, - 1, -3] from [5, (2.26)], yields (3.15). By choosing 
[p] = [-1, -3, -3] and i = 1 in [3, (5.5)], we can then get (3.16). Equations 
(3.17), (3.18), and (3.19) follow from putting a4 = 1 and b4 = 0 in (2.23), 
(2.25), and (2.24), respectively. In the first case, and in later cases where nec- 
essary, I2C is expressed in terms of N2C by using (4.18). To get (3.20) we 
choose [p] = [-3, -1, -1] and i = 1 in [3, (5.5)]. The same procedure, with 
[p] = [-3, 1, 1], yields (3.21) with the help of the identity 

(5.1) bibjA(p + 4ek) + (bidJk + bjdik)A(p + 2ek) + dikdjkA(p) 

= b2A(p + 2e, + 2ej). 

Equations (3.22), (3.23), and (3.24) all come from (C41), while (3.25) and 
(3.26) come from (B 14). The final two formulas, (3.27) and (3.28), are obtained 
by putting a4 = 1 and b4 = 0 and subsequently replacing the subscript 5 by 4 
in (2.36) and (2.38), respectively. 

6. NUMERICAL CHECKS 

The 18 quartic cases in ?2 and the 15 cubic cases in ?3 were checked numer- 
ically when x = 2.0, y = 0.5, (al, bl) = (0.3, 0.2), (f, g, h) = (0.4, -0.2, 
0.1), (a4, b4) = (0.9, -0.3), and (a5, b5) = (0.4, 0.5). In each case the in- 
tegral on the left side, defined by (2.18) or (3.13), was integrated numerically 
by the SLATEC code QNG. On the right side the seven basic integrals If, 
I2 '... I3C were calculated from (2.14) to (2.17) and (3.8) to (3.10) by using 
the codes for R-functions in the Supplements to [3, 4]. The A's were calcu- 
lated by a simple code, and the remaining calculations were done with a hand 
calculator. For each of the 33 cases the values obtained for the two sides agreed 
to better than one part in a million. 
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Some intermediate values for the quartic cases are: 

M2 =0.62249271, RF (M2, L2 L2) =1.2543726, 

L = 0.54993185, RD (M2 L2 ,L2 =1.7960842, 

LI = 0.74305357, RJ(M, L, L+, W+) = -0.99822609, 

W2 =-0.54216139, RC(U2 W2 )=1.7237432, W+ 

U2 0.16410988, RC(P22 Q2) 0.98880184, 
w2 = -0.13717583, Rj(M2, L 2,L2, M2 P) =1.5689637, 

M2 + p = 0.92172730, RC(U2 W12) 2.2358652, 
W12 = 0.21960988, R(P2 Q2) = 1.16864877, 

A(1,, 1 1,-1) = 0.54975858, Il = 5.0174903, 
A(1 , 1, I -1, -2) = 0.04955294, I2 = 5.8882786, 
A(-I 1, 1, 1,-1) = 0.33929812, I3 = 2.7228427, 
A(1, 1, 1, -3) = 2.6651950, 13 = 2.7668674. 

Some intermediate values for the cubic cases are: 

M2 1.1713435, RF (M2, L2 , L2) = 0.89978529, 

L_ = 1.1496883, RD(M2, L2, LI) = 0.67751039, 

L= 1.3929988, RJ(M2, L2, L+, W+) = 0.71986645, 
2= 1.2606479, RC(U2, W2)= 1.7844272, 

U = 0.34181141, RC (P2, Q2) = 1.9470611, 

W = 0.30070030, 
A(-1, -1, -1) =-0.88367862, Ilc = 3.5991412, 
A(-1, 1, 1) = -0.14545887, I2C = 1.9453098, 
A(-I 1, 1, -2) = 1.3179127, I3C = 4.0022901, 
A(1, 1, 1) =0.16859514, N =6.8301223, 
A(-3, 1, 1) =-1.1735711, K1c =0.906573017 
A(3, 1, 1) = 0.22618313, Klc =0.96438740. 

BIBLIOGRAPHY 

1. P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, 
2nd ed., Springer-Verlag, New York, 1971. 

2. B. C. Carlson, Elliptic integrals of thefirst kind, SIAM J. Math. Anal. 8 (1977), 231-242. 

3. , A table of elliptic integrals of the second kind, Math. Comp. 49 (1987), 595-606. 
(Supplement, ibid., S13-S17.) 

4. , A table of elliptic integrals of the third kind, Math Comp. 51 (1988), 267-280. (Sup- 
plement, ibid., S1-S5.) 

5. , A table of elliptic integrals: cubic cases, Math. Comp. 53 (1989), 327-333. 

6. , Landen transformations of integrals, Asymptotic and Computational Analysis (R. 
Wong, ed.), Marcel Dekker, New York, 1990. 



280 B. C. CARLSON 

7. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic-Press, 
New York, 1980. 

8. A. P. Prudnikov, Yu. A. Brychkov, and 0. I. Marichev, Integrals and series, Vol. 1, Gordon 
and Breach, New York, 1986. 

AMES LABORATORY AND DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, 

IOWA 50011 
E-mail address: s1 .mth@isumvs.bitnet 


	Cit r199_c202: 
	Cit r200_c204: 


